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WITH NONLOCAL BOUNDARY CONDITIONS

© MykoLAa BokALO, VASYL DMYTRIV

Lviv, Ukraine

INTRODUCTION.

The boundary value problems with nonlocal boundary conditions have been treated
in many works. Individually, Day [1] while studying quasistatic thermoelasticity posed
a model involving parabolic equation with nonlocal boundary condition. This model has
been expanded into more general problems [1,2]. The results of these papers concern
the boundary value problems with an initial condition. '

In the current paper, we consider Fourier Problem (the problem without initial condi-
tions) for evolution differential-functional equations with nonlocal boundary conditions.
Note that Fourier Problem for strongly non-linear parabolic equations of the second
order with nonlocal boundary conditions of the type of periodicity was investigated in
[5].

Let us introduce several concepts and symbols we need later. Let D be a domain
in the space RZ}'. Denote by C*°/%(D), where o is a number from interval [0;1],
Banach space of real-valued functions, which are continuous in D, if a = 0, and
Hélder continuous functions in D with exponent «, if @ > 0 (see definitions in
[8], p.16). Denote by C?+**+2/2(D) a subspace of space C**/2(D) which consists
of functions w such that {ws.s, ({i,4} C {1,...,n}), we} C C**/2(D). The norms
in these spaces are denoted by ||-[|2,,, and || - |24 14a/2, Tespectively. If D is

unbounded domain then denote by Cj, ’“/ 2(D), Cxr*'*/2(D) the spaces of functions

defined in D which restrictions on théoglosure of algrcbounded subdomain D’ of domain
D belong to C*</ 2(ﬁ) and C2+®1+e/2(D7) | respectively (a € [0;1]). Set C(D) =
C99(D), Cioe(D) % ¢ C2Y(D). In the case when Q is conjugation of domain D and the
part of its boundary, we denote by C2*/2(Q), C2t***/2(Q) the spaces of functions

loc loc
which restrictions on closure of arbitrary bounded subdomain D’ of domain D such

that D’ C Q, belong to spaces C*%/2(D’) and C?**1+2/2(D’), respectively (o €
[0;1]).

1. STATEMENT OF THE PROBLEM AND FORMULATION OF MAIN RESULTS.

Let Q =Qx (—=00,T], 0<T < 400, Q be a bounded domain in R} with smooth
boundary 8Q, £ =90 x (—o0,T].
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We consider a problem

Pu(z,t) = Bugz;, D _ Lu(z,t) + a(z, t)u(z,t)—
~f(@:t,u(z,t)u(, 1) = f(z,1), (z,t)€Q, (1)
Bu(z,t) = u(z, t) — g(z,t,u(z, t); u(-, t)) = h(z,t), (z,t) €I, (2)
where n
Lu(z,t) = Z ai;(z,t 8 Bl t) +Z: aifz, 8“’(3: t)’
3,7=1

f(z,t,6):C(Q) - R, (z,t,£) € QxR, and g(m,t,n;-) :C(Q) - R, (z,t,n) € IxR,
are families of functionals.

Henceforth this problem is called Problem (1),(2).

We impose the following main conditions on the data-in:
(A1) functions a;;,a;,a are continuous in Q, {¢,5} C {1,...,n};

(A2) aij = aji, {,5} C {1,..,n}, and for arbitrary point (z,t) € Q and for all
= (&1, ..,&n) € R™ the following inequality holds

Z: aij(z,t)&:&; > plt) Z‘E::

1,7=1 s=1
where u(t) >0, te (—o0,T);

(A3) for all v € C(@) functions f(z,t,&()), (z,t,6) € Q xR, g(z,8,(),
(z,t,€) € £ xR, are continuous, nondecreasing in ¢, i.e. for arbitrary {¢!,£2} C
R, such that £ > &2, the following inequalities hold:

f(xa t, gl; U()) ot f(xs ta 62; b‘()) 2 0: (2’?, t) € Qa
9(z,t,€450()) - 9(2,t,6%0()) 20,  (2,t) € Z;

moreover, these functions are Lipschitz in £, more precisely, there exist functions
Li(z,t), (z,t) € Q,and L9(z,t), (z,t) € T, such that for arbitrary {¢,£2} C R
and v € C()

|f(z, 8,65 0() — f(=,8,6%0()) < LI (z,8)|€* - €3], (2,t) €Q,

|g(a:, t:él;v(')) e g(xs t, 62; U())l < Lg(:l?,t)lf]' = £2|s (x’t) e E;
(A4) functionals f(z,t,¢;-) : C(Q) = R, (z,t,£) € QxR, and g(z,t,&;-) : C(Q) — R,
(z,t,€) € £ x R, are G ateaux differentiable, more precisely, for arbitrary v €

C(f) there exist linear and continuous functionals f;(z,t,&;v(-), ) : C(Q) - R,
(z,t,€) € @ xR, and g.(z,t,§v(), ) :C(Q) =R, (z,t,€) € T xR, such that

%f(l‘, t,¢&; ’U() + 3h('))|3=0= fé(xa t:f;”(‘)s h())s (.."':, t, £) € Q X R,
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d
E;g(m: L '£; ’U(') + Sh(')) |s=0= g;(xv L Er 'U('), h’(')): (.7.‘, L 5) € X X Ri
for all h € C(Q) ; the following inequalities hold:
f;(matag;”(')ah(')) P 0: 92(3;’, t: {,‘U(),h()) 2 Oa ) if h 2 0;

moreover, assume that

17421, & 0(), RO < K (@, 0)lIhllo, (@16 €@xR, veC@),

llgi(z,t, & 0(), AN < K9(2, )llhllo@my (=86 €ZxR, veC),
where Kf(z,t), (z,t) € Q, K9(z,t), (z,t) € T, are some functions;

(A5)
Eé%(a(x’t) — F(z,t)) > ao(t), t € (—o0,T),
where F(z,t) & Kf(z,t) + Lf(z,t), (z,t) € Q, and ao is continuous in
(—o0,T] function;
(A6)

G(z,t) <1, (z,t)€X,
where G(z,t) def K9(z,t) + L9(z,t), (z,t) € ;
(A7) f € Cioc(Q), h € Croc(Z).

For the convenience of formulati'ng and proving the results, without loss of generality
let us make additional assumption
(A0) f(z,t,0,0)=0, (z,t) €Q, g(z,t0,0)=0, (z,t) € Z.

In the sequel we assume that conditions (A0)-(A7) hold.

DEFFINITION 1. A function u € CZ’I(Q) N Cioc(Q) s called a solution of Problem

loc
(1),(2) if it satisfies equation (1) and boundary condition (2).
Before formulating of main results of the work we introduce some notations and
concepts.
Let b be an arbitrary continuous in (—oo,T] function. We denote by V' (b) a set of
continuous differentiable in (—oo,T] functions v which satisfy

T
V() < b(t), te (~00,T], f (b(2) — v/ (£)) dt = +oo.

Let us note that when b(t) = by, t € (—o00,T], where by = const, then the set of
functions {ct, t € (—00,T]: c€ R, ¢ < by} is subset of V(b).

Let H be one of the sets Q, @ or T, and v € V(ag). Denote by E,(H) a set of
continuous functions ¢(z,t), (z,t) € H, which satisfy an inequality

lg(z,t)| < Ke @), (z,t) € H,
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where K > 0 is a constant which may depend on g¢.

We denote by Q::::l/j:’ where a € (0;1], a space of families of functionals f(z,t,§;-):
CQ) = R, (z,t,€) € Q x R, such that for arbitrary numbers to < T, 13 > 0,13 > 0
there exists a constant K > 0 which satisfies an inequality

|f(=* 6 00)) = £, 2,600 < K[|zt — 22 -t —22/]
for arbitrary {(z!,t), (z%,t?)} C Q X (t0,T], and any & € [-13,l;] and v € C(Q),
lvllo@ <2

THEOREM 1 (AN APRIORI ESTIMATE OF THE SOLUTION). Let f/(ao — V') € E,(Q)
and h/(1-G) € E,(X) for some v from V(ao). Then the solution of Problem (1),(2)
u from E,(Q) satisfies the following estimate:

v(T) ()
lu(z,t)| < max{ sup __!h(y, AIe sup _______If(y L |e’ }oe™® = Moemv®
wmnez 1=GU,7) " yneq ao(r) — V(1) 3)

for all (z,t) € Q.
THEOREM 2 (UNIQUENESS OF THE SOLUTION). The solution of Problem (1),(2) from
class E,(Q), where v € V(ap), is unique.

Forall k € N let us denote by Q* = Qn{(z,t) : ¢ > -k}, TF =Zn{(z,t): ¢t > —k}
and define a function ux € C2L(Q*) N C(QF), as the solution of Problem:

Prug(z,t) = fk(a:,t), (z,t) € @ (1x)
Bkuk(x!t) = hk(x3t): (:L‘, t) € Eka (2k)
uk(:c, —k) =4, z e Q. (3];)
Here
ow(z,t)

Pow(z,t) = 5 Lw(z,t) + a(z, t)w(z,t) — fr(z,t, w(z,t); w(-,t))

and Bkﬂ)(x, t) . w(:v, t) =5 gk(x’ t,W(:B,t);‘LU(',t)) Yw € Cz’l(a)a fk(zi tﬂ‘f! ') T C(t +.
k)f(witsg;'): (xatsf) € Q X R} gk(x’isg;J = C(f o k)g(a:,t,{;-), (mata{le 2 x R:
hi(z,t) = ((t + k)h(z,t), (z,t) € I, fi(z,t) = f(z,t)(t + k), (x,t) € Q, where ¢
is smooth and monotonic in R function such that ((t) =0 if ¢t < 1/2, ((t) =1 if
t>21, keN.

THEOREM 3 (EXISTENCE OF THE SOLUTION). Let the following conditions hold for
some a € (0;1] and v € V(ao) :

(B1) {aij, ai, a} C CZ*2(@Q), 0aij/0zs € Cioc(@), {irj,s} C {1,...,n}; u(t) >
0, t € (—00,T];

(B2) f e ®>2/%,

T, tloc?

(B3) f € Ce*@), f/(ao—v') € B,(Q); heCo™**/*@), h/(1-G) € B,(3);
(B4) for all k € N Problem (1x) — (3x) has a solution uj € C2+o1+e/2(QF)
Then Problem (1),(2) has a solution v in E,(Q) NCZ**(@Q) n cir'*te/%(Q).

loc loc
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COROLLARY. Let conditions (B1)-(B3) of theorem 3 hold, moreover, the following con-
ditions are true: (C1) there ezist a family of functionals g*(x,t,&;-) : c)—R,
(z,t,&;-) € @xR, and a function n € CP(Q), 0 < 7 < 1, such that g(x,t,&5-) =
g*(z,t,&4), (z,t,€) € & xR, and for arbitrary (z,t) € Q@ and v € C(Q)
g (,£,0; (0) () = 9% (2,t, v(2); v(-)), moreover, §(z,t) = g*(z,t,0; (nw)(-,t)) €
02+a,1+a/2(a) for any w € Cz+a,l+a/2(§) ;

loc
(C2) 82 € C%+e.
Then the statement of Theorem 3 is true.

REMARK 1. The functionals g(z,t,&;-): C(Q) = R, (z,t,€) € Z xR, from Bitsadze-
Samarskit boundary condition

K
9(z,t,&0()) =D _ gk(@, th(é(x), (2,t,6) €T xR, ve CQ),
k=1

satisfy the condition (C1) of corollary if K € N, gy € C*al+¢/2(Q), gy(z,t) >
0, (z,t)€ X, ke {l,..,K}, and functions &, k € {1,...,K}, are defined in Q with
values in Q5 = {z € Q: dist(z,00Q) > 6}, § >0, & € C*T*(Q).

Let II, be a space of ordered pairs of functons (f,h) such that f € Cp (418

ocC

f/(ao — ') € E,(Q), he CE***/*@), h/(1 - G) € E,(E) for v € V(ao). Let us
assume that conditions (B1),(B2),(B4) are fulfilled. Then there exists unique solution
of Problem (1),(2) in E,(Q) for arbitrary (f,h) € IL,, where v € V(ao) . In short, we

write this as u = NZ,(f, h).

THEOREM 4 (CONTINUOUS DEPENDENCE ON DATA-IN). Let conditz‘ons'(BI ),(B2),(B4)
of Theorem 3 hold. Then for arbitrary € > 0 there exists § > 0 such that for any
(f1, k1), (f2, he) € II,,, satisfying conditions:

|f1(xs t) — f2(z,t)|ev(t)_ |h1($, t) i h2(x:t)|ey(t}
su <d and su
(m,t)léQ Go(t) - V’(t) (:c,t)EE e G(:B, t)

the following inequality holds:

sup |ui(z,t) — ua(z, t)|e”(*) <&,
(z,t)EQ

where u, = NZ,(fi,h:), i€ {1,2}.

2. AUXILIARY STATEMENTS

Let to be an arbitrary fixed number in (—o0,T). Set Qo = Q X (to,T] and Zo =
9Q x (to,T) where 0 < T < 400.

LEMMA 1. Let functions i,% € C*(Qo) N C(Qo) fulfil the inequalities
Pii(z,t) < Pi(z,t), (z,t) € Qo,
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Bi(z,t) < Bi(z,t), (z,t) € Zo, i(z,t0) < d(z,t0), z€Q.  (4)
Then i(z,t) < i(z,t) for all (z,t) € Qo.

Proof. Let us assume a contradiction. Let t* € ﬁo,T] be a maximum value of
variable ¢ such that i(z,t) < i(z,t) for all (z,t) € QoN{(x,t):to <t <t*}. Then
there exists a point z* € 2 such that a(z*,t*) = 4(z*,t*).

It follows from the third inequality of (4) that t* > ¢o. Using (5) we next show that

(z*,t*) ¢ To. Assuming that (z*,t*) € £y then for the function w €1 % — 4 by the
second inequality of (4) and condition (A4) we have

0= w(x*st*) = g(:t:‘, t‘)ﬁ(x*:t*);ﬁ(’s t*)) i g(:c*,t*,ﬁ(:c‘, t*);ﬁ(': t‘))+
+Bi(z*,t*) — Bu(z*,t*) <0,
but this contadicts the statement of lemma.

It leads to the fact that the function w in QoN{(z,t):to < t < t*} takes a maximum
value at the point (z*,t*) € Qo and it equals zero Thus, using condition (A2) we have

dw(z*,t*) /8t > 0, dw(z*,t*)/8zs =0, E aij(z*,t*)0%w(z*, t*) /8zi0z; <

i,7=1
Hence and by condition (A4) it follows

Pii(z*,t*) — Pi(z*,t*) 2 0,
but this contradicts the third inequality of (4). O

LEMMA 2. Assume that all conditions of Lemma 1 are fulfilled and the inequalities (4)
are nonstrict. Then 4(z,t) < 4(z,t) for all (z,t) € Qo.

Proof. Let us consider an auxiliary function dy(z,t) = 4(z,t) + Ae™ ¢, (z,t) €
Qo, where A > 0, m* +ao(t) > 0, t € [0,T]. Using conditions (A3)-(A5) we obtain
Pi(z,t) = Pi(z,t) + Ae™ *(m* + a(z, ) — [ (z,t, 4(z, t) + Ae™ 55 (-, £) + Ae™ F)—

—f(z,t,4(z, t); 4(-,t))] > Pu(z,t), (z,t) € Qo.
Since Pu(z,t) < Pi(z,t), and Pi(z,t) < Piy(z,t), then Piu(z,t) < Puy(z,t),
(z,t) € Qo. It follows from conditions (A3), (A4) and (A6) that
Bii(z,t) > Bi(z,t) + Ae™ *(1 — G(z,t)) > Bi(z,t), (z,t) € To.
Hence, using the fact that #(z,to) < @x(z,to), = € §, in view of Lemma 1 we have
i(z,t) < 4a(z,t), if (z,t) € Qo, A > 0. Since Al_i’%l_!_fs;\(z,t) = 4(z,t), then @(z,t) <
i(z,t), (z,t) € Qo. O

LEMMA 3. Let ag(t) > 0, t € [to,T]. Then an arbitrary function u € C(Qo)NC?%*(Qo)
such that Pu is the bounded in Qo function, fulfil an estimate

B P
[u(z, )] < max{max|u(y, to)l, sup |Bu(, )| |Pu(y,7)

) z,t GQ
ye w.m)eSe 1~ G(¥,7) " (y,r)eqo  @o(7) “aolr) D&Y

(5)



def

Bu(y,7)| Pu(y,t
Proof. Let C = max{m:éc]u(y,toﬂ, SUD  -Glayy  SUP JTO((?)')"} Consider a

(y,7)€Z0 (¥,7)EQo
function @ = C. It follows from conditions (A3)-(AS5) and the choice of C that

Pi(z,t) > C(a(z,t) — F(z,t)) = C - ao(t) > Pu(z,t), (z,t) € Qo. (6)
Using condition (A6), in view of definition of function % we obtain
Bﬁ(&‘,‘, t) > C(l %3 G(I, t)) > B‘U(JJ’, t)3 (.’E,t) € Zo. (7)

It is obvious that (z,t0) > u(z,t0), € Q. Hence and by (6),(7) and Lemma 2
we obtain 4(z,t) > u(z,?), (z,t) € Qo. It can be shown analogously that u(z,t) >
-i(z,t), (z,t) € Qo. O

LEMMA 4. Let ao(t) > 0,t € [to,T]. Then arbitrary functions {u1,uz} C C(Qo) N
C%1(Qqo) such that Puy, Pus are bounded in Qo functions, fulfil an inequality

lu1(z,t) — ua(z, t)] < max { » max [ua (g, to) — u2(y; to)l;

|Bui(y, 7) — Bua(y, 7)| |Pus(y, 7) — Pua(y,
, Mmax
(v,7)ETo 1-G(y,7) (¥:7)€Qo ao(T)

Oy, (w5 € Q.
Proof. Let u;,us be the same as in the formulation of lemma. Then

fz,t,ui(z, t); ua (-, 8) — fz, ¢, ua(z, t);ua(-, 1)) = f(z,t, ui(z, t); ui(dot, t))—

—f(z, t,ug(x, t);u1( 1)) + F(=, b, uz(z, t);ua (-, t) — f(z, b, ua(z, t); ua(:, t)).
We have

f(:c} ta U]_(:B, t); ‘U.]_(', t)) - f(m: ta u’2(xa t); ul(': t)) — ft(a:) t)u1,2(x: t))

where f,(z,t) = f(ztus (@,8)501 () — (@t u2(2,)5u1 () , if uy(z, t) # ug(z,t),

uy (z,t) —uz(z,t)

otherwise f.(z,t) =0; u12(z,t) d=°fu1 (z,t) — ua(z, t), (z,t) € Qo.
By condition (A4) we obtain

f(m:tau2($a t);ul('st)) e f(ma t: ﬂg(fb,t);UQ(',t)) = f,*(l',t; ul,2(°’t))s
where fux(z,t;-) : C(Q) = R, (z,t) € Q, is a family of linear continuous and

nondecreasing functionals.
The preceding facts lead to

flz,t,ui(z, t);ui(, t) — fz,t, ua(z, t); uz(-,t)) = fla, t,uy o(z, t); u1,2(:s t))
where f(z,t,&-): C(@Q) = R, (z,t,€) € Q x R, is a family of functionals with the

same properties as the family f(z,t,&;-):C(Q) - R, (z,t,6) € @ xR.
Analogously

g(z,t,ul(:c,t);u;(-,t)) — g(z, t,uz(z, t); ua(+, t)) = §(z, t, ur 2(x, t); u1,2(-, ),
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where §(z,t,&7) : C(Q) = R, (2,t,€) € T xR, is a family of functionals with the
same properties as g(z,t,&;+): C(Q) = R, (z,t,§) € T xR.

Denote fi(z,t) %er Pug(z,t), (z,t) € Qo, k € {1,2}; hi(z,t) = Bug(z,t), (z,t) €
Yo, k € {1,2}. Subtracting from equation (1) for u; the same equation for u, we
obtain

Pul,g (z,t) = @%%?’—t) — Luy o(z,t) + a(z, t)uy 2(z, t)—
_f(m! t'! u1,2($) t); u1,2(.:‘ t)) =4 t))] = f1,2(m}t)! (x! t) = QO) (8)
where f1,2(a:, t) o fl(a:,t) - fg(:c,t), (z,t) € Qo. ]
Analogously

B'U-l,z(l?, t) = ‘U.l,z(:'c,t) - §(:z:,t,u1,2(:c, t);u;,,g(-,t)) = hl,z(x,t), (:B,t) € Xo, (9)
u1,2(mat0) - ul (m:t‘)) = uz(x:tO): TE Q: (10)

where hj 2(z,t) & hi(z,t) — hao(z,t), (z,t) € Zo.
Using Lemma 3 and (8)-(10), we complete the proof . [J

LEMMA 5. Let v € V(ag) and functions {u1, uz} C CoX(Q) N Cioc(Q) are such that

C

1 —us € B, (@), (Puy— Pus)/(a0—v') € E,(Q), (Buz — Buz)/(1~G) € E,(E) . Then

|Buy(y, ) — Bua(y, 7)|e*(")

|ua (2, 1) — uz(z,t)| < max{ sup

(y,7)ET 1-G(y,71) ’
|Puy(y, 7) — Pus(y, 7)|e’™ Lt 38
o e®, (z,t)eQ. (11
(y,'r}I;Q ao(7) = v'(1) } (z,t) € Q. (11)

Proof. First we consider the case v = 0 € V(ag) and use the ideas of paper [7].

Denote fk(xat) déf Puk(z:t): (SJ,t) € Qa k € {1,2}; hk(mst) B Buk(xat)a (:‘L‘,t) €
t

T,k € {1,2}. Let A(t) = [ao(r)dr, T € (—00,T], and v € (0;1). Let us multiply
T

equation (1) and condition (2) for u; and uy; by ") . After simple transformations
we obtain

ot ,t . .
Py g(z,t) = ——t-{?—"-;—if——) ~ Lty k(z,t) + (a(:v, t) — 'yao(t))u%k(m,t)—

— f(@,t, iy (2, )™y 1 (-, 1) D)eO) = fi(2,8)e™®), (2,8) € Q, (12)

B’rﬁ“{,k (I: t) = ﬁ'r,k (37, t) . g(:v?ta ﬁ"!,k(xa t)e—q)‘(t}; ﬁ*‘y,k (', t)e——‘yh{t))e'rk(t) —
= hyo(z,t)e™®, (z,t) €D, ke{l,2}, (13)
where ,5(z,t) = ur(z, t)e™®, (z,t)€Q, ke{l1,2}.
Let t. be an arbitrary negative number, Q. = Qx(t.,T],Z. = N x (L., T). It is easy
to see that coefficients of the differential operators P? and B” fulfil the conditions
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similar to conditions (A0)-(A7) for the coefficients of the operators P and B with
ao(1 —7) in place of ag. Thus, in view of Lemma 4, by (12) and (13) we obtain

|ﬁ'}"1;2($= t)l < max{e‘p\(t.) - max Iu1,2(yst*)|a 67A(T} . sup __.lhl'z(y'-' T)I ’
yeit GHE stgma. 1 —SQT)

e | f1,2(y,7)|
el =), (o) €Q., (14)

where .12 def iy 1 (2,8) — Uy 2(2, 1), (z,) € Q; fr2(z,t) E fi(2,t) - fa(z,t), (z,8) €
@ haet) Fhet) - h(z1), (@) €S

Since uj — up € Eo(Q) then |ujo(z,t)| < Cp for all (z,t) € Q, where C; >0 isa
constant. Because ™) — 0 as t, — —oo implies (). maglul,g(y,t*ﬂ -0 as

ye _
t. = —oo. Hence, letting first ¢, — —oo in (14) and after letting v — 0+ we obtain

(11) for v=0.
Let v € V(ag),v # 0. Let us multiply equation (1) and condition (2) for u; and uy
by e’®) . After simple transformations we obtain (see (18),(19))

P ix(z,t) = f(z,t)e’®, (z,t) €Q, ke {1,2},

Byi(z,t) = hi(z, t)e’®, (z,t) e Z, ke {1,2},

where dx(z,t) = ui(z,t)e’®, (z,t) € Q, k € {1,2}; Pou(z,t) = Ov(z,t)/0t —
Lo(z,t) + (az,t) — V' (t))v(z,t) — flz,t,v(z,t)e @ ; v, t)e™O)e "B | (g, t) €Q,
B,v(z,t) = v(z,t) — g(z,t,v(z,t)e”"®; v(,t)e"®)e®, (z,t) € X, v € Cl(Q).
It is easy to see that coefficients of the differential operators P, and B, fulfill the
conditions analogous to conditions (Al)-(A6) for the coefficients of the operators P
and B with ao— 1/ in place of ag. It is obvious that ;2 € Eo(Q) . Hence, based on
the proof of lemma for ¥ =0 we complete the proof. [

3. PROOF OF BASIC RESULTS

Proof of Theorem 1. To obtain an apriori estimate of the solution of Problem (1),(2)
it suffices to set u; = u, us =0 and use Lemma 5.

Proof of Theorem 2 As a consequence of Lemma 5, we have the uniqueness of the
solution. |

Proof of Theorem 3. Consider first the case ¥ =0 € V(ag). Let for all k € N u;
be a solution of Problem (1) — (3k) .

Based on Lemma 4 we have ug(z,t) = 0 for all (z,t) € Q x [—k,—k +1/2].
us extend the function wu; by zero on @\ QF and denote these extensions again by
ur (k € N). It is obvious that ux € C?t*1+*/2(Q) and u; is a solution of Problem
(1),(2) with fi, fr, 9%, hx in place of £, f,g,h, respectively, we denote this by ux =
NZE(fe,hx), k € {1,2,...}. In view of Theorem 1 we have

|‘U-k($, t)l MO: (I, t) € 61 keN (15)

We show that the restrictions of terms of sequence {ux} on the closure Q' of an
arbitrary bounded subdomain Q' of domain Q is the fundamental sequence in C(Q’) .
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Let for arbitrary {k,I} C N wux = NZE(fi,hx), w = NZE(fi,h). Set At) &
t
[ ao(r)dr, t € (—o0,T], and multiply the equalities (1,,) and (2,), m € {k,!},
T

by e3*®) . After simple transformations we obtain

Qﬁ_ﬂ%@ — Liip, (z,t) + (a(z, t) — %ao(t))ﬁm(:r, t)—

— fm (@, b, G (2, £)e™ 2B iy (-, 1) P3N IAD) = f (2 £)e3AD) | (2,8) € Q,  (16)
i (2, 8) = G (2, £, T (2, £)e " 32O; Gy (-, £) e~ 32B) M) = |

= hun(z,t)e?®,  (z,8) € £, a7

1

where @i (z,t) = um(z,t)ez ®, (z,t) € Q, m e {k,1}.

Let us show that for an arbitrary fixed natural number m the restrictions of terms
of the sequence {ux} on Q™ compose fundamental sequence in C(Q™). We take an
arbitrary value & > 0 and fix it. Let ko € N is such that ko > m and 2M,-e3X(~—ko) <
€. Let k and [ be arbitrary natural numbers greater than ko (constant My is from
(320). It leads to fi(z,t) — fi(z,t) =0, (x,t) € Q¥ , and hi(z,t)—hi(z,t) =0, (z,t) €
X%o,

Consider the restrictions of equalities (16) and (17) on Q*° . Based on Lemma 4 with
3ao(t) in place of ao(t) we obtain

|tk (z,t) — w(z,t)| < i |t (y, —ko) — @y, —ko)l, (z,t) € QFo. (18),
: v

By (15) we have max |iix(y, —ko) — s (y, —ko)| < 2My-e3*(~%0) < . This and (18) lead
yeN

to max |ug(z,t)— w(z,t)| <e for k,l > ko. Hence max |ug(z,t)| <e.
{z,t)erol k(z,t) 1(z, 1) any 0 (x,t)e'q'F"l ki (2, t)|

Therefore we have that the restrictions of the sequence {@x} where ix(z,t) =
uk(z,t)e3*® | (z,t) € Q, on the set @™, where m is an arbitrary fixed natural
number, is fundamental sequence in C(Q™). Thus, there exists function u € Cioc(Q)
such that ux — u uniformly as & — oo on an arbitrary compact from @ . In view of
(15) we have |u(z,t)| < My, (z,t) € Q.

Let us show that u is a solution of Problem (1),(2). Since for any ¥k € N u; =
NZE(fx, hx) , we have

W — Lug(z,t) + a(z, t)uk(z,t) =
== fk(x: ta ‘Uk((c, t); Uk(',t)) o fk(x‘l t)} (:83 t) E Q' (lgk)

Let {Qm,}°_, be asequence of domains §,, CQ, m € N suchthat Q; CQ; C ... C
Q,, subset..., %Nﬂm = Q, dist(Qm,00m+1 > 0), m € N, (dist(4, B) is a distance
of _

between the sets A and B ). Set Q(m) = Qm x (—m,T), m € N.
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Let m be an arbitrary fixed natural number. By (195) and Theorem 10.1 of

monograph [8; pp.238-239] we obtain ||uk-||ff:/‘;” < Cy, k €N, where C; > 0 is

a constant which does not depend on k.
Using this, (19%), conditions of Theorem 3, in view of Theorem 10.1 of monograph

[8; p.400] we obtain ||utll3(m), 4/, < Cs, Where Cs > 0 is a constant which does not
depend on k.

Hence, and by well-known properties of space C2¥*1+2/2(Q ) it follows that for
an arbitrary fixed number v € (0,a) there exists a subsequence of sequence {ux}g>
which tends to u in C?*"1+7/2(Q,.)), the restrictions of u on Q(n) belong to the
space C2te1+a/2(Q ). Hence, using diagonal process, we conclude that there exists a
subsequence {u;}32, of sequence {ur}32; such that for an arbitrary bounded domain
Q' C Q located on the positive distance from X the restrictions ux; on Q', j €N,
compose a sequence which converges to the restriction of w on Q’ in C2+71+7/2(Q)),
and u € Clzota’l"'“” 2(Q) . Hence and by (1x) we obtain that u is a solution of equation
(1). The fulfilment of condition (2) follows from (2x) and uniform convergence of {u}
in Qm for an arbitrary fixed natural number m. Thus the proof of Theorem 3 is
complete in the case of ¥ =0 € V(ag) .

Let v € V(ap), ¥ # 0. Probem (1),(2) can be rewrited

aag;, B Li(z,t) + (a(z,t) — V' (t))d(z, t)—
—f(z,t,0(z, )e B a(, t)eM)e’® = f(z,1)e®, (z,1) € Q, (20)

i(z,t) — g(z,t, 4z, t)e D a(-, t)e ™ ®)e’® = h(z,t)e’®, (z,t) €T,  (21)

where i(z,t) = u(z,t)e’®), (z,t) € Q.

Problem (20),(21) is similar to Problem (1),(2) with ag — ¢/ in place of ag in the
case of v =0 € V(ap) . This completes the proof of Theorem 3. O

Proof of Corollary. For the sake of simplicity without loss of generality we consider
only the case of k=1, more precisely, we consider a problem

Py (:B, t) T fl(zv t)& (3,‘, t) € Q1$ (22)
Byuy(z,t) = hi(z, ), (z,t) € 3 (23)
el oy wen (24)

Further we use the arguments similar to that in [4].
Without loss of generality we take ao(t) >0, t € [-1,T]. Let

‘Uo(:!:,.t) = Ca (ma t) € @;

where i
Cd=ef m{ sup Ih'l(y: T)l sup |f1(y: T)l .
(y,7)eX! 1- G(ya 7) (y,7)EQ? ao(T)

41



Define the sequence of functions {v,}52, by the rule: if the function v,_; €
C*e1+2/2(QT) is known then a function v, € C?+1+2/2(Q1) is a solution of problem

Pvp(a:, t) = %::’t) — Luy(z,t) + a(z, t)vp(z, t) =
= fl(x; ta vp——l(x: t);vp—l('a t)) i fl(m? t)a (:L’, t) s Qla (25)
vp(xa t) = QT(-’B: ta O; (ﬂvp—l)(°a t)) + hl(ms t)s (.’l?, t) = 213 (26)
vp(z,-1)=0, z€Q, ~ (27)

where function 7 € C§°(Q?) is from condition (C1) of corollary, g7(z,t,&;-) = &(t +
1g*(z,t,§;), (7,5,6) € QxR.

It follows from Theorem 6.1 of monograph [8; p.513], that a sequence {v,} is correctly
defined, that is, for arbitrary p € N function v, € C?*®1+2/2(QT) is uniquely found.

Further, using our assumptions and the results of monograph [8] it can be shown tha.t
sequence {vP} converges to the solution of Problem (22)-(24).

|

Proof of Theorem 4. Let € > 0 be an arbitrary number and (f, hy), (fz,hg) €

I, such that sup |f1(%‘-")"f2(?:_‘-"]|e"' <¢/3, sup |h1 @, m)=ha(y,T)|e" ¢/3. and
’ wnee ©0V0 wnes KD

ui = NZ,(fi,hi), i € {1,2}. Hence, in view of Lemma 5 we complete the proof of
Theorem 4. U
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